M.Sc. PHYSICS

Programme Outcomes of M.Sc.

- Acquire interdisciplinary knowledge and the skill of designing and conducting experiments independently in collaboration and interpreting scientific data.
- Communicate effectively, analyze critically and learn to adapt to the socio technological changes.
- □ Face competitive examinations that offer challenging and rewarding careers in science and education.
- □ Identify, formulate and critically analyze various scientific problems and design/develop solutions by applying the knowledge to different domains.

No	Students will be able to	PSO NO
1	Have well-defined knowledge on theoretical concepts and experimental methods of advanced physics (Classical mechanics, Mathematical physics, Integrated electronics, Astrophysics, Nanophysics, Microprocessor etc.)	PSO-1
2	Acquire skills in performing advanced physics experiments and projects using modern technology and numerical simulations.	PSO-2
3	Develop and communicate analytical skills ranging from nuclear to cosmology to progress in the expanding frontiers of physics	PSO-3
4	Apply and interpret physics principles in various physical observations	PSO-4
5	Become a complete professional with high integrity and ethics.	PSO-5
6	Prepare for deeper research experiences in an area of emphasis.	PSO-6

Programme Specific outcome

Semester III Core VII: Integrated Electronics Subject Code: PP1731

Number of hours per week	No of credits	Total number of hours	Marks			
6	4	90	100			

Objectives: 1. To provide knowledge in the basic structure and working concepts of electronic devices.

2.To acquire application skills involving digital integrated circuit.

Course Out	Course Outcomes							
СО	Upon completion of this course the students will be able to :	PSO addressed	CL					
CO-1	Understand the basic operation ,features and parameters related to diodes,transistor, switching devices and interpret their applications (FET,JFET,D-MOSFET,EMOSFET,SCR,DIAC,TRIAC)	PSO-1	U					
CO- 2	Explain about the internal circuitry and logic behind any digital system (AND,OR,NOT,NAND,NOR,RTL,TTL,I ² L).	PSO-2	U					
CO- 3	Assess the working of combinational circuits.(flipflops, counters)	PSO-3	E					
CO -4	Design various synchronous and asynchronous sequential circuits.	PSO-6	С					
CO- 5	Understand the characteristics of op-amps and the applications of op-amps	PSO-2	U					
CO -6	Analyse the behaviour factive filters and IC555	PSO-4	С					

Teaching Plan

	Credit:5		Tota	al Hours: 90 (Incl. Ser	ninar & Test)	
Unit	Module	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
Ι	Devices	and Applications		·		
	1	FET – Types, Principle and working, Salient features and Important Terms / parameters, Practical JFET and FET applications	4	Understand the concepts and salient features of FET and JFET	Illustration, Descriptive lecture	Evaluation through: quiz, Problem
	2	MOSFET – Types and circuit operation, D-MOSFET	3	Distinguish between MOSFET and D-MOSFET and their working	Illustration, Descriptive lecture	solving
	3	SCR – Working and Equivalent circuit, SCR as a switch and Application of SCR	3	Understand the working of SCR as a switch.	Illustration, Descriptive lecture of Circuit theory	questions Descriptive answers
	4	Triac - Construction / Operation / Characteristics and Applications, Diac and its Applications	3	Differentiate DIAC and TRIAC their working and applications	Discussion on circuit working differences.	Formative assessment (I)
II	Digital I	ogic circuits and Flip Flops	•	•		
	1	Digital IC characteristics, Diodes and	4	Identify the use of	PPT	Evaluation

		transistors in logic circuits.		and transistors in	Illustration.	through: quiz.
				logic circuits	Descriptive	
				0	lecture	
	2	DTL type – AND OR NAND and	4	Explain about the	Discussion	
	_	NOR RTL and TTL type NAND	•	internal circuitry	on circuit	short
		FCL and I^2L circuits		and working of	working	questions
		Lee and TE circuits		basic logic circuits	differences	questions
	3	Flip flops – NAND Latch SR D IK	3	Assess the	Descriptive	Descriptive
	5	flin flon	5	functioning of	lecture on	answers
		пр пор		various flip flops	circuit	
				various inp nops	working	Assignment
					differences	1 10018-1110-110
	1	T and IK master Slave flip flop	2	Understand the	Discussion	Formative
	+	1 and 3K master – Stave mp nop	2	working of various	on circuit	assessment
				flip flops	working	(I&II)
				mp nops	differences	(iuii)
ш	Pogistor	rs and Counters			unterchees	
111	register	Shift register Ding counter Shift	4	Understand the	Illustration	Evoluction
	1	Sint register, King counter, Sint	4	Understand the	Descriptive	Evaluation through aniz
		counter (Johnson's counter)		principle and	Descriptive	unrough: quiz,
				working of	lecture	
				registers and		
	2		_	counters	D' '	ahaut
	2	Asynchronous counter / Ripple	5	Identify the	Discussion	short
		counter, Mod counters, 4-bit binary		different	on circuit	questions
		down counters and 4 Bit up/down		construction and	working	Description
		counters, BCD counter using		circuit design of	differences.	Descriptive
		decoding gates		asynchronous	Practical	answers
				counters	demonstrati	
	2		4	A11 / 1 *	on L	-
	3	Synchronous counters –Design, Mod	4	Able to design	Lecture	Doministry
		3 counter, Random Sequence		counters with	discussion	Formative
		generator, Synchronous BCD counter		random counting	on design	assessment
				sequence	techniques	(11)
					of Mod	
					counters	
IV	Op-Am	p Circuits				
	1	Characteristics and parameters, Op-	4	Understand the	PPT	Evaluation
		amp comparator. Schmitt Trigger.		basic operations.	Illustration,	through: auiz.
		Inverting and non-inverting amplifier.		features and	Descriptive	
		Voltage follower summing and		application of OP-	lecture.	Problem
		difference amplifier Differentiator		amp	Practical	solving
		and Integrator		r	demonstrati	U
					on	
	2	Current to voltage converter.	4	Assess the	Group	short
	-	Solution of Differential equation and		instrumental	design of	questions
		simultaneous equation using on-amp		Applications of	instrumentat	1
		Instrumentation Amplifier using		OP-amp	ion	Descriptive
		Transducer Bridge			amplifiers	answers
	3	Temperature indicator and controller	3	Apply the OP-	Discussion	-
	5	Light intensity meter . Measurement	5	amp for different	on design	Assignment

	4	of flow and thermal conductivity, Analog weight scale Differential input and output amplifier, Voltage to current converter, Very high impedence circuit, sample and hold system	3	applications Identify the use of OP-amp in various circuits .	techniques of Mod counters Discussion on circuit working differences	Formative assessment (II&III)
V	Filter ci	rcuits and 555 Timer		I		
	1	Active filters, First and second order Low pass Butterworth filter, Filter design, frequency scaling	3	Understand the principle of filter design	PPT Illustration, Descriptive lecture	Evaluation through: quiz,
	2	First order and Second order High pass Butterworth filter	3	Differentiate between the working of first and second order filter	Descriptive lecture with PPT Illustration,	short questions Descriptive
	3	Higher order filters, Band pass filter, Wide and Narrow Band Rejection filter,Wide and Narrow Band Rejection filter, All pass Filter	4	Extend the design and application of various types of filters.	Descriptive lecture	answers
	4	555 Timer - internal structure, Schmitt Trigger, Astable multivibrators, Monostable multivibrators	4	Understand the working and applications of 555 timer	Practical demonstrati on Descriptive lecture with PPT Illustration,	Formative assessment (III)

Course Instructor :Dr. V.Shally

8085 microprocessor

Head of the Department:Dr.S.Mary Delphine

CL

Α

Α

Semester III
Core VIII: Microprocessor and Microcontroller
Subject Code: PP1732

	~ J		
No of hours per week	No of credits	Total no of hours	Marks
6	4	90	100

Objectives: 1. To provide knowledge on the hardware, programming and applications of 8085 microprocessor and 8051 microcontroller.

2. To gain hands on experience in interfacing peripherals to the

microprocessor. Course Outcomes

СО	Upon completion of this course, students will be able to	PSO addressed
CO-1	Explain the operation of various components of the microprocessor 8085 and Pheripheral I/O, memory mapped I/O.	PSO-1
CO-2	Explain the various addressing modes and the instruction set of	PSO-1

CO-3	Develop skill in writing programs for 8085 microprocessor	PSO-2	Ар
CO-4	Understand the various data transfer schemes, interrupts and interfacing circuits of 8085 microprocessor	PSO-1	U
CO-5	Experiment with the common applications of microprocessor (Display of decimal numbers, Generation of waves forms, Microprocessor based traffic control,Measurement of frequency, resistance, temperature, display of speed of a motor)	PSO-4	А
CO-6	Explain the architecture of 8051 microcontroller and some applications	PSO-1	U

Teaching Plan Total Hours:90 (Incl. Seminar & Test)

	Credit:4		Total Hours:90 (Incl. Seminar & Test)			
Unit	Module	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
Ι	Evolution	and architecture of microprocesso	r 8085			
	1	Evolution of microprocessors – Intel 8085 microprocessor – Architecture – ALU – Timing and control unit	4	To be able to describe the architecture of 8085 microprocessor	PPT Illustration, Descriptive lecture	Evaluation through: quiz,
	2	Registers (general purpose & special purpose registers) – Flags – Data and address bus – Pin configuration – 8085-based microcomputer	4	To explain the organization of 8085 microprocessor	PPT Illustration, Descriptive lecture, comparative study	short questions Descriptive answers
	3	8085 machine cycles and bus timings	4	To understand the working of each instruction and its execution	Descriptive lecture, comparative study	Formative assessment(I)
	4	Memory interfacing – Peripheral I/O – Memory mapped I/O	3	To realize the interfacing of memory & various I/O devices with 8085 microprocessor	Descriptive lecture and group discussion	
II	Introduct	tion to assembly language programm	ning	-		
	1	Intel 8085 instructions – Opcode and operands – Instruction word size	4	To understand the instruction set of 8085 microprocessor	Descriptive lecture, comparative study	Evaluation through: quiz,
	2	Instruction set of Intel 8085 – Instruction and data formats	4	To classify the instruction set of 8085 microprocessor	Descriptive lecture	short questions Descriptive
	3	Addressing modes – Stack – Subroutines	3	To identify the addressing mode of an instruction	PPT Illustration, Descriptive lecture, comparative study	answers Formative assessment(I& II)
1	4	Examples of assembly language	4	I o distinguish the use	Descriptive	

	(a) Data (programs: addition of two 8-bit numbers – 8-bit subtraction – One's compliment – Two's compliment – Square of a number – Largest number in an array – Ascending or descending order – Smallest number in an array	rfacing	of different instructions and apply it in assembly language programming.	lecture and comparative study	
	(b) Micro	oprocessor based data acquisition sys	stem			
	1	Address space partitioning – Memory and I/O interfacing – Data transfer schemes – Programmed data transfer schemes, DMA data transfer scheme	4	To understand the various data transfer schemes of 8085 microprocessor	Descriptive lecture	Evaluation through: quiz, short questions
	2	 Interrupts of Intel 8085 – Hardware and software interrupts Interrupt call locations – RST 7.5, 6.5 and 5.5 – Interfacing I/O devices – I/O ports: non programmable I/O port Intel 8212, Programmable Peripheral Interface (PPI) Intel 8255 	4	To understand the operation of Programmable Interface devices	Descriptive lecture	Descriptive answers Formative assessment(II)
	3	Analog to digital converter – Sample and hold circuit – Analog multiplexer – ADC 0800 – Interfacing of A/D converter ADC 0800	4	To be able to describe the interfacing of A/D converter	PPT Illustration, Descriptive lecture	
	4	Interfacing of ADC 0800 and analog multiplexer AM 3705 – Interfacing of ADC 0800, analog multiplexer and sample and hold circuit	3	To realize the programming & interfacing of various devices with 8085 microprocessor	PPT Illustration, Descriptive lecture	
IV	Micropro	ocessor applications	1			
	1	Delay subroutine – 7 Segment LED display	4	To demonstrate the assembly language programming for delays and subroutines	Descriptive lecture	Evaluation through: quiz, short questions
	2	Display of decimal numbers – Display of alphanumeric characters – Formation of codes for alphanumeric characters	3	To demonstrate the interfacing of display	Descriptive lecture	Descriptive answers Assignment on
	3	Generation of square wave or pulse – 8-bit multiplication – 8-bit division – Measurement of electrical quantities – Frequency	4	To develop programming skills in assembly language	Descriptive lecture	applications. Formative

		measurement – Resistance measurement				assessment(II & III)
	4	Measurement of physical quantities – Temperature measurement and control – Measurement and display of speed of a motor – Microprocessor based traffic control	4	To build up the assembly language programming skills and real time applications of microprocessor	Descriptive lecture	
V	The 8051	Microcontroller				
	1	Inside the 8051 – Introduction to 8051 assembly programming – Assembling and running an 8051 program – The program counter and ROM space in the 8051	5	To understand the basic concepts and architecture of 8051	PPT Illustration, Descriptive lecture	Evaluation through: quiz, short questions
	2	Data types and directives – 8051 Flag bits and the PSW register – 8051 register banks and stack – Pin description of 8051 –	4	To explain the register organization of 8081	PPT Illustration, Descriptive lecture	Descriptive answers
	3	 I/O programming – Bit Manipulation. Arithmetic Instructions: Addition of unsigned numbers, - Addition of Individual bytes 	4	To develop knowledge about assembly language programs of 8051	Descriptive lecture	Group discussion
	4	Subtraction of unsigned numbers– Unsigned multiplication and division.	2	To build up knowledge about assembly language programs of 8051	Descriptive lecture and comparative study	Formative assessment (III)

Course Instructor : M. Mary Freeda Head of the Department: Dr.S.Mary Delphine

Semester III Elective III (a): Physics of the Cosmos Subject Code: PP1733

No of hours per week	No of credits	Total no of hours	Marks
6	5	90	100

Objectives: 1. The course enables the students to understand and realize the historical evolution of Universe and principles involved in Astrophysics

2. The topics included are Solar system, Comets, Galaxy, Cosmology and Astronomical Instruments which play a key role in the future employability and global progress of students.

Course Outcomes

СО	Upon completion of this course the students will be able to :	PSO addressed	CL
CO-1	Perceive the historical evolution of solar system and universe	PSO-3	Е

CO- 2	Describe the principles of physics in the formation of astronomical objects like planets-Satellites - Asteroids and Comets	PSO-1	U
CO- 3	Examine the requirements and limitations of instrumentation for modern astrophysical observations (Optical telescopes and Radio telescopes)	PSO-2	An
CO -4	Explain the basic issues involved in present day astrophysical investigations (Red shift and the expansion of the universe)	PSO-6	U
CO- 5	Analyse the formation of Binary stars, multiple stars, Neutron stars and Black holes	PSO-4	An
CO -6	Interpret the observations of Galaxies, dark matter, quasars and pulsars.	PSO-5	E
CO -7	Distinguish between of some important models of the universe and its observational tests.	PSO-5	An

Teaching Plan Total contact hours: 90 (Including lectures, assignment and tests)

				Lecture	Learning	Pedagogy	Assessment/
Unit	Module		Topics	Hours	outcomes		Evaluation
Ι		Solar system					
	1	l Components of the solar		ar 4	Define the	Lecture	
		system - The Sun - The Planet		t	basic	discussion	Evaluation
		- Two types of planet		8-	Components		Class test,
		Satellites			of the solar		oral question
					system		assignment
	2	As	teroids and Comets	- 4	Apply	Discussion	Formative
		Co	omposition difference	es	various	and PPT	assessment I
		bet	ween the Inner and Out	er	Inner and		
		pla	nets - Bode's law: Tl	ne	Outer		
		sea	arch for order - Density as	a	planets	Seminar	
		me	easure of a planet's				
		co	mposition –				
	3	Ag	ge of solar system - Origin of	of 4	Study of	Discussion	
			solar system - Interstellar		solar system	and PPT	
		cl	oud - Formation of the sola	r			
	Net		Nebula				
	4	Co	ndensation in solar Nebula	1 - 3	Formation	Derivation	
		Ac	cretion and Planetesimals	-	of Planets	and group	
		Fo	rmation of Planets	-		discussion	
		Fo	rmation of Moons - Fin	al			
		sta	ges of Planet formation	-			
		Fo	rmation of Atmospheres	-			
		Cl	eaning up the solar system				
т					0.000		
11	1	1 Intercharding Minnel Discourse			ai s Study on	Domissation	
	1	m	Spectroscopic Binary	- 4	Binary and	discussion	Evaluation
		Г	Specific Dilary – Selinging Binary – Multiple		multiple	uiscussioli	Class test
			ers - Origin of Binary stars	,	stars		oral question
		કા	and = Origin Or Dinary Stars		stars		or al question

						Assignment,			
	2	Stellar masses and mass	3	Define and	Discussion	seminar			
		Luminosity Relation – Mass		derive mass	and PPT				
		transfer in close Binary		Luminosity		Formative			
		systems.		Relation		assessment I			
	3	Discovery of pulsars –	4	Study on	Derivation				
		Rotating Neutron star model of		Neutron	and group				
		pulsars – Period distribution		stars and	discussion				
		and loss of rotational energy		Black holes	PPT				
					Seminar				
	4	Test of rotating neutron star	4	Neutron star	Discussion				
		model of pulsars Gold's model		and its	and PPT				
		of pulsars, Black holes.		models					
III			Galax	vies					
	1	Discovering Galaxies - early	4	Study on	Derivation	Evaluation			
		observations of Galaxies -		galaxies	discussion,P	Class test,			
		Types of Galaxies -		C	РТ	oral question			
		Differences in Stellar and Gas				Assignment,			
		content of Galaxies				seminar			
	2	The cause of Galaxy types -	2	Define and	Derivation				
		Galaxy collisions and Mergers		derive	and group	Formative			
		- Measuring properties of		Galaxy	discussion	assessment II			
		Galaxies - Galaxy distances -		types					
		using Cepheid Variables -		51					
	3	The Red shift and Hubble Law	5	Define and	Derivation				
		- Measuring the diameter of a		Derive Red	and group				
		Galaxy -Measuring the Mass		shift and	discussion,P				
		of a Galaxy - Dark Matter-		Hubble	PT				
		Quasars as probes of		Law, Dark					
		Intergalactic Space		Matter and					
		0		Quasars					
	4	Gravitational Lenses-Galaxy	4	Define .	Derivation				
		clusters - The local group-Rich		derive and	and group				
		and Poor Galaxy clusters -		apply	discussion,P				
		Super clusters		Gravitationa	PT				
		I		l Lenses and					
				Galaxy	Seminar				
				clusters					
IV		Cosmology							
	1	Introduction – Red shift and	4	Prove Red	Derivation,	Evaluation			
		the expansion of the universe –		shift and the	discussion,P	Class test,			
		Matter Density in the universe		expansion of	PT	oral question			
		and Declaration parameter		the universe		Assignment,			
		1				seminar			
	2	Perfect cosmological principle	4	Define and	Derivation	Formative			
		– Fundamental equation of		derive	and group	assessment			
		cosmology.		Fundamenta	discussion,	II/III			

				l equation of	PPT	
				cosmology		
	3		3	Define and	Derivation	
				Derive	and group	
				Some	discussion	
		The current theories – Some		important	a .	
		important models of the		models of	Seminar	
		universe		the universe	D · · ·	
	4	Observational tests of	4	Define ,	Derivation	
		cosmological models.		derive and	and group	
				apply	discussion	
				cosmologica		
				I models.		
V		Astrono	mical In	struments		
	1		4	Study on	Discussion.	Evaluation
	-		-	light and	PPT	Class test.
		Light and its properties – Earth		Earth		oral question
		atmosphere and the		atmosphere		Assignment.
		electromagnetic radiation				Seminar
	2	Optical telescopes	3	Define,	discussion,	Formative
		L L		discus and	PPT	assessment III
				sketch		
				Optical	Seminar	
				telescopes		
	3		4	Define,	discussion,	
		Radio telescopes – Hubble		discus and	PPT	
		space telescopes –		sketch		
		Astronomical spectrographs –		Radio		
		Photoelectric photometry		telescopes		
	4	Spectrophotometry – Detectors	4	Define,	discussion,	
		and Image processing.		discus and	PPT	
				sketch		
				Detectors		
				and Image		
				processing.		

Course Instructor: Dr.C. Nirmala Louis

Head of the Department: Dr.S.Mary Delphine